«First  ‹Previous   Page 2 of 754   Next›  Last» 

Bordeaux: new mayor Pierre Hurmic wants a debate on "the dangers of 5G"
France Created: 12 Jul 2020
(auto-translated:) The new mayor of Bordeaux wants to consult the population on 5G. Other Green candidates expressed their opposition to the technology during the campaign. But they do not have the powers to oppose the government's timetable.

Will the ecological wave that swept through France in the municipal elections put a stop to the deployment of 5G in the territory? Invited to RTL's morning show on Monday (June 29th), the new ecologist mayor of Bordeaux, Pierre Hurmic, said that he wanted to "open the debate on 5G" while the Bordeaux metropolis is one of the French territories selected by Arcep (telecommunications regulatory authority) to test a 5G experimentation platform in the coming months.

"I find it totally unacceptable that we can impose 5G without explaining, without discussing, without seeing what the aspirations of the inhabitants are. You know, I'm a civil lawyer, I've been fighting Linky (SmartMeter) in the last few years. I don't like the techniques imposed. 5G deserves a real debate, we have to tell our citizens what the dangers of 5G are, there are dangers of 5G, and I think we need to put this discussion on the table so that Bordeaux and Bordeaux do not learn overnight that their territory is covered by 5G," he explained.

This position echoes one of the proposals on the "Bordeaux Breathe" list that he led to victory in the municipal elections in Bordeaux. Candidate Pierre Hurmic promised to obtain a moratorium on the city's experimentation with the 5G network and to launch a major public debate around the deployment of this technology.

As in Bordeaux, several newly elected Green mayors expressed their opposition to 5G during the campaign. In Nantes, Grenoble or Besançon, they questioned the impact of 5G on health and the environment and denounced the increasingly important weight taken by technology in society. But, they should not have the means to prevent operators from deploying their antennas and the future network.

Mayors can't oppose 5G

On Twitter, telecoms network lawyer Alexandre Archambault recalled that in a 2011 decision,the Council of State ruled that "only the state authorities designated by law (minister, ARCEP, ANFR) have the authority to regulate the implementation of mobile phone relay antennas in general. "A mayor cannot therefore regulate by decree the establishment of relay antennas on the territory of his municipality, on the basis of his general police power," the public institution said.

Contacted by RTL, the lawyer explained that "given the obligations of deployment, respect for emission powers and environmental integration, the flexibility of the communities will be almost nil once the licences have been granted by the end of the year". "Regarding Bordeaux, it is all the more limited because the metropolis has committed itself to the ARCEP to facilitate experimentation," he stresses.

The current climate of distrust of 5G should not prevent the government from keeping its timetable. Despite the appeal filed before the Council of State by associations, the moratorium requested by the Citizens' Convention and the dozens of relay antennas that have been targeted across the country in recent weeks, the executive has maintained the auction for the allocation of frequencies at the end of September with a view toa commercial launch before the end of the year. The results of the Anses evaluations on the health effects of 5G are expected in the first quarter of 2021.
Click here to view the source article.
Source: RTL, Benjamin Hue, 29 Jun 2020

Towering problem in Teulada-Moraira, Costa Blanca
Spain Created: 12 Jul 2020
RESIDENTS on a 20-home Moravit urbanisation are furious about a mobile phone mast going up in front of them.

At a recent meeting with Teulada-Moraira’s Public Works councillor Hector Morales they complained that despite their opposition, workmen had started work on the tower.

This, they pointed out, not only affected them but also a nearby hotel, while admitting that they were puzzled by the choice of site as the area is in a hollow.

“We came here looking for tranquillity and now we can’t sleep for worrying about the antenna,” one resident told the local Spanish media.
Click here to view the source article.
Source: Euro Weekly News, Linda Hall, 09 Jul 2020

Massive 5G Electricity Costs are in Focus Ahead of the Global Build-out at the Edge
USA Created: 5 Jul 2020
5G remains in the headlines as test cities and clusters are popping up in the western world while parts of Asia are set to pull the trigger on broad-based service as early as next week. As I have talked about in earlier blogs, 5G is a technology that operates in a small cluster unlike the linear, continuous service of 3 and 4G. Once you travel outside of the confines of a 5G cluster, you lose connection to the 5G service and will automatically revert to 3/4G for continuation of service. Yes, this means 5G and 4G, 3G and even 2G will overlap in many deployments.

In terms of scale, significant global coverage in 2/3/4G is in place with about 5 million telco tower base stations in the world with average power draw at about 6 kilowatts (kW) rising to 8-10kW at peak traffic periods. The global footprint is 50GW at peak power! Unfortunately, most of these tower base stations were not conceived with energy efficiency in mind. They operate around a PUE of 1.5 (power in/power of the telco(IT) load), meaning that about half of the power is wasted. When deployed at scale, this power adds up quickly and waste is multiplied by the number of deployments.

For example, as an initial 5G buildout, a Chinese operator recently added 100,000 5G ready base station sites averaging 10kW each – that’s 1 GW of energy! At a PUE of 1.5, this could cost 1.3 B€ ($1.45B) and give off 8,000 tons of CO2 annually (based on U.S. national average CO2 footprint). But if these systems were designed to be extremely energy efficient, PUE could be 1.1, and it would only cost 1B€ ($1.12B) and give off only 6,000 tons of CO2 annually.

These 5G base stations will also support 2/3/4G as well, in as many as seven different bands from 700MHz up to 3.5GHz. These “all the G’s” base stations average 10kW, with 13.7kW during peak periods. With standalone 5G (no 2/3/4G) two or three times as many base station sites will have to be deployed to achieve continuous 5G coverage! But there is some good news: once standalone, continuous 5G coverage is in place, and 5G devices are ubiquitous, the 2, 3, and 4G equipment can be retired with a corresponding energy reduction of around 4kW average and 6kW peak.

However, power draw at these sites will not necessarily get better. In about five years, newer technology 3.5GHz sites using massive MIMO (multiple in, multiple out) with four transmitters and four receivers (so-called 4T4R) are predicted to draw 14kW on average and up to 19kW under peak load. But that’s not all – the power consumption of 5G sites at 3.5GHz, with even larger 64T64R and massive MIMO could require three times the power of a 4T4R site!
A new generation of transformation rolls through telco at the edge

A positive for energy consumption is a shift from traditional telco equipment in the base station to software defined 5G running on standard IT equipment in the form of a MEC (mobile edge computing or multi-access edge computing). The first MEC deployments are a combination of traditional telco and pre5G/5G, but these will gradually move to be more and more IT based servers – see my blog, Powerful Confusion! The Differences Between 4.5G, Pre5G, and 5G Explained. 5G is a software-defined architecture and that means telecoms are setting themselves up for success by deploying a canvas from which they can innovate, easily introduce new services, and deploy applications on the network with location flexibility. This is a very important point, as the 5G standard the industry has been collaborating on – the 3GPP R16 Standard – is delayed and will not be frozen until April 2020, and not be released until July 2020.

As this new generation of transformation rolls through telco at the edge, it is quite clear that energy use is a top of mind topic from a business and societal perspective. The massive scale of deployments dictates that much attention needs to be given to these edge sites. For 5G to succeed, MEC data centers must be: initially designed for maximum efficiency; sealed for low maintenance; easily deployable (connect and start-up); built in a factory to drive down costs and drive up reliability; and managed by next generation DCIM to maximize availability and efficiency. We may need new architectures and technologies, such as liquid cooling, predictive analytics, and AI enabled power optimization, to make this a reality.

This journey is just beginning…
Click here to view the source article.
Source: Schneider Electric blog, Steven Carlini, 11 Nov 2019

5G Heats Up Base Stations
USA Created: 4 Jul 2020
Before 5G can be deployed commercially on a large scale, engineers have to solve some stubborn problems—including how to make a hot technology a whole lot cooler.

5G-capable modem chipsets are already on the market from Qualcomm, Samsung, Huawei, MediaTek, Intel and Apple, with some 5G service (LTE-Advanced/LTE-Advanced Pro) available in the U.S. But still mostly missing from the 5G equation are base stations powerful enough to shape and direct an individual RF connection to every subscriber within range, while performing feats of electromagnetic geometry to maintain that connection.

A base station in the wireless world is a device that connects other wireless devices to a central hub. It is a wireless receiver and short-range transceiver that consists of an antenna and analog-to-digital converters (ADCs) to convert the RF signals into digital and back again. The 5G base station will have beamforming massive multiple-input, multiple-output (MIMO) antennas—an array of antennas that can focus and steer multiple beams simultaneously to different targets on the ground, such as a cell phone, using the millimeter wave spectrum. Sometimes that means bouncing the signal off an object to reach near the target rather than broadcasting a signal broadly over an area.

Although Ericsson, Samsung, Nokia and Huawei are producing 5G base station technology now, there are gaps in that technology. The base stations are still not powerful enough to track mobile customers and make sure each is connected every nanosecond.

What’s developed for base stations has to work seamlessly with handsets. They also have to be reliable enough to last for years, but the current technology is running too hot. And how that affects reliability and signal integrity isn’t clear because at that point now one is quite sure how the antenna arrays will be tested because there are no exposed leads. Those antennas are essential to form, steer and receive beams, both in the base station and in handsets and other mobile devices, including connected cars, health monitoring devices and even industrial equipment.

“If you embed the antenna into the package, when the package heats up or cools down, that changes how the antennas work,” said Keith Schaub, vice president of business development for Advantest’s U.S. Applied Research & Technology unit. “That affects beam forming, beam steering, and it creates a power loss. It also affects the fabrication process, which needs to be tightly controlled.”

Schaub noted that base stations and handsets are all designed to standards, but the implementation of those standards can vary greatly. For example, when two major chip companies developed their first 5G chips, they adhered to the standards but the chips wouldn’t work with each other due to minor inconsistencies in the drivers.

Two-phase commitment
Despite the moniker, 5G is more of a statement of direction than a single technology. The sub-6GHz version, which is what is being rolled out today, is more like 4.5G. Signal attenuation is modest, and these devices behave much like cell phones today. But when millimeter wave technology begins rolling out—current projections are 2021 or 2022—everything changes significantly. This slice of the spectrum is so sensitive that it can be blocked by clothing, skin, windows, and sometimes even fog.

The result is that many more cells are needed to keep devices connected, and base-stations and handsets will be constantly searching for ways to stay connected. As anyone with a cell phone knows, searching for signals drains the battery faster. But it also keeps the logic circuits active, and that generates heat. In base stations, which are tightly packed with racks of equipment, thermal buildup can cause all sorts of problems. It can have an impact on signal integrity, and it can reduce the lifespan of all components.

“When you have a frequency with a range that’s not as far as a cell tower, you have to add much more density to the network to get the same amount of connectivity,” Michael Foegelle, director of technology development at ETS-Lindgren. “When you design these, you have to assume they’ll be outside, and you have to design in a way to dissipate all that. Since you’re outside and don’t want to risk putting in active cooling, you might have to go fix a lot, that means a lot of ambient cooling,”

Another source of heat stems from the analog circuitry used to generate RF signals. Power amplifiers and converters are needed to get the analog signal onto digital networks. But using silicon for those conversions isn’t efficient, so heat builds up. And while beamforming theoretically can save power, because you’re not broadcasting in every direction, that technology adds its own issues.

“First, you need enough hardware to do the number of digital-to-analog conversions you have to do, and the cost is still prohibitive,” Foegelle said. “But it’s also power-hungry. One of the side effects of the arrays is that the circuits used for them aren’t terrifically efficient. They get hot, and you have to be able to dissipate a lot of heat because of the amount of equipment and conversions and the efficiency issues.”

It’s not entirely clear if this technology will be replaced with digital technology. It’s also not clear how digital technology would impact effects such as heat, particularly if designs are pushed to the most advanced process geometries.

“The 5G standard allows for both,” said David Hall, chief marketer at National Instruments. “Analog circuits are less efficient, which creates more heat in the base station. With a digital beam, there is a change in the waveform itself, particularly with multiple access. So you have to adjust the phase to the wave carriers.”

Hall noted that heat exacerbates non-linear effects. “If you add heat, distortion is not as repeatable.”

That makes it more difficult to identify any heat-related issues. One solution may involve the testing itself. “Historically, we have been using box instruments,” said Heath Noxon, market development manager at NI. “Now you have to hit this more quickly and process test much faster.”

Different materials can help, as well, but they add to the cost. “You can get efficiencies using GaN or GaAS that are probably 60% or 70% compared to silicon, which is more like 20% to 30% efficient, but those are much more /expensive, ” Foegelle says.

That issue could be sorted out if there is enough volume for either gallium nitride (GaN) or gallium arsenide (GaAs) so that economies of scale begin to kick in. Both of those materials are well understood and there is plenty of expertise in working with them. “Engineers have spent 20 years optimizing the efficiency of gallium arsenide power amplifiers,” said NI’s Hall.

“The problem may not be as big as it sounds, though,” Foegelle says. “With millimeter wave the bandwidth is high enough you don’t have to spend much time communicating. It moves quickly, which could minimize heat buildup as well as reduce the amount of energy you broadcast. But we won’t know that until we’re able to see more work on base stations.”

The volume problem
Heat is just one of the many issues cropping up in the 5G world. This is an entirely different wireless technology, particularly when it comes to millimeter wave. The amount of pressure put on technology and service providers trying to move into—and often create—the 5G industry is very high, and few tools are available to test and validate any individual approach early enough in the process to be useful, according to Frank Schirrmeister, senior group director for product management at Cadence.

This is particularly important for dealing with heat, which can impact the lifespan of components. Thermal effects can speed up electromigration, impact performance, and create noise that can impact quality. But engineers are just starting to work with these technologies, and it’s not clear what else might crop up.

“If engineers are used to working at lower frequencies on these earlier cellular applications, and then they transition to working on 5G at higher frequencies, all of sudden all the rules are more stringent, all the rules of thumb go out the door, and you have to do a more thorough design,” said Mike Leffel, an application engineer at Rohde & Schwarz. “It is a more challenging design. Components don’t work as well at the higher frequencies as they used to in lower frequencies, so you really have to retrain yourself on how to make a well-functioning product. Everything gets smaller. Wavelengths get smaller. The ability to adjust the phase of a path is more difficult because now the wavelength is so small so a small change in a wavelength might be 10 degrees instead of 1 degree at lower frequencies.”

Rhode & Schwarz recently started one-day educational conferences to help engineers understand the issues. But for Leffel, preparing engineers for the 5G universe is “one of the biggest challenges for the customers that we have. They have to rethink how things work at higher frequencies. What I see is somebody saying ‘I used to do this at 6GHz, I didn’t even have to calibrate the cable. I would just hook it on and it was good enough. Now when I’m at 40GHz, when I do that, it fails. Everything fails and I have to do this calibration. And when I calibrate, it still doesn’t work right. And the guy came in from Rohde & Schwarz and said you have to use a torque wrench to do this. I never had to use a torque wrench before.’ Yes, but you never worked at 40GHz before. Now everything is touchy. And this is a more expensive, better quality cable at 40GHz. You can’t use that cheap cable anymore. You have to calibrate maybe every day instead of once a week. You have to worry about the length of that line and the insertion loss, so there’s an extra trace on this board, so you can measure how much loss is in that line and then subtract it from the results so that when you measure a path on here, you can correct for that trace. At low frequency you don’t have to do that. At high frequency, that trace is critical to know exactly. So all of these things you didn’t have to do before are suddenly important, and if nobody told you this, then how would you know?”

Millimeter wave technology isn’t new, and a lot of the networking issues in millimeter wave have been addressed before in satellite communications or radar. However, the cost difference between one satellite and a few hundred thousand WLAN-scale access points changes the cost/benefit equations enough that there’s not much direct comparison, said Cadence’s Schirrmeister.

There also are ongoing updates to the 5G standard. “With millimeter wave we’re talking about wavelengths of about a centimeter, so the antennas are also very small and you use two for each subscriber—one upstream, one down,” Foegelle said. “But for base stations we only have a few vendors marketing them. There’s still another version of the standard coming out later this year, so there’s some uncertainty there. And we are getting carriers coming in and trying to figure out what the propagation characteristics on their networks are going to look like and what types of problems they can expect to see in the field, but the prices are still pretty high for distribution of a product that you’re going to have to put out in density more like a WiFi access point than a cell tower.”

It is best to keep things simple with a technology like 5G, which is fantastically complicated to build and test even before the standards or first rounds of implementation are finished and proven, noted Susheel Tadikonda, vice president of engineering at Synopsys’ Verification Group. “The PHY layer is getting very complex. You need high bandwidth, and the latency requirement means you have to do a lot of the processing in the PHY layer itself. We used to have the luxury to send it up the chain and have it done with an algorithm. What you’re doing is moving logic form one portion to another. You still have to convert an analog radio wave. Doing it digitally may be more effective, but in 5G you have not 12 or 14 modems, but hundreds of antennas doing beamforming. It is much more complicated than 4G was, and the transition is more complicated than the transition to 4G was.”

Hybrid designs
There are good reasons to stick with hybrid approaches, however. All, or nearly all, RF base stations that operate below 6GHz use digital beamforming because it is more power- and heat efficient than analog. At frequencies higher than 6GHz the filters required for conversions take up too much space for digital to be practical, according to a 2018 presentation at MIT by Gabriel M. Rebeiz, a University of California San Diego engineering professor and an expert in high-frequency communications and phased array design.

Hybrid designs that use analog signals for RF and digital for networking are among the most common topologies used in satellite communication radar and other 5G-similar applications of the last two or three decades, communication methods, according to Redeiz, who specializes in millimeter wave and primarily on those issues before the growth in demand for terrestrial demand for high-frequency bandwidth.

Hybrid models are also less computationally complex than digital, though the arrays are larger, which makes digital beamforming much more attractive as the size of the devices and antennas shrink, according to an analysis published by Mostafa Hefnawi, a researcher at the Royal Military College of Canada in Ontario.

People are talking about a lot of ways to mix and match frequencies and protocols and devices in other ways that would deliver a lot of value from 5G, especially for people who don’t necessarily need microsecond latency and 10,000 Gbit/sec wireless network connections, says Gilles Lamant, distinguished engineer at Cadence.

“People are talking about putting RF over fiber, but to cross analog RF at high speed to digital might cause major heat problems. Still, those would be a lot less with a slower wireless interface, or even a smaller geographic area covered by 5G that allowed all that RF data to go straight onto the network digital domains,” Lamant says. “The key here is energy efficiency, so you send the RF across the fiber without converting it first and you can save money and time. You can convert it later or transport that signal straight to another RF domain. It is a little science-fiction-like to think about, and you would have to put more energy in the connection after a certain amount of distance, but if the tradeoff is in cost and energy. It is something to think about rather than sending data out over a heavy, slow coaxial cable.”

Conclusion
Relying too much on the idea of people using smartphones means ignoring a lot of other applications. Analytics providers or IoT network owners could find connecting to 5G access points as attractive a business proposition as a company needing instant high-speed access for mobile video, but companies doing two-way high-definition streaming use the physical network behind the 5G access point is much different than an IoT network sending big chunks of data in batches to the cloud.

“If all you care about is how fast you can post Instagram pictures, that’s a different set of concerns than if you have 100,000 devices spread out across a square kilometer than you want to connect,” Schirrmeister says.

At this point there are many unknowns. Heat is just one more issue, although it is an important one. But how that gets resolved may depend on a lot of other factors, from how much of the base station is digitized to the density of cells and base stations and the millimeter wave frequencies. At this point there is plenty of momentum for 5G, but there are a lot of variables in play that could have a big effect on how this wireless technology is rolled out, how well it works, and how long it lasts.

—Ed Sperling and Susan Rambo contributed to this report.
Click here to view the source article.
Source: Semiconductor Engineering, Kevin Fogarty, 07 May 2019

European Greens question ICNIRP standards, call for new public body to look at 5G exposure
Belgium Created: 24 Jun 2020
Green parties in the European Parliament have published a report calling for the EU to distance itself from Icnirp, the international group for standards on RF exposure. The report claims Icnirp's independence cannot be guaranteed as the organisation lacks official oversight, and the parties called for a new public regulatory body to be set up ahead of the widespread roll-out of 5G networks.

The EU's regulations setting limits on exposure to electro-magentic radiation from wireless networks and equipment are largely based on the recommendations from Icnirp. However, the Green MEPs claim the health risks are too great to be left to private organisation like this.

They drew parallels with asbestos, tobacco, leaded petrol climate change and pesticides - all areas where lobbying, a lack of truly independent research and economic interests left the health risks under-estimated for too long. They see a similar problem for non-ionising radiation.

They pointed to research published in the Lancet in December 2018 showing that 68 percent of the 2,266 studies examined found a significant biological or health effect from non-ionising radiation. While this does not confirm an actual risk to health, it does provide enough scientific evidence to doubt the claims over no effects from exposure to the electro-magnetic fields, according to the report.

The MEPs recommend setting up an independent public authority to address the matter, which could eventually be integrated into the WHO.
Click here to view the source article.
Source: Telecom Paper, 24 Jun 2020

SpaceX Opens Starlink Internet Beta Test To The Public
USA Created: 24 Jun 2020
SpaceX has opened the registration for the beta testing of its space-based Internet service via the company’s Starlink satellites. The company is most likely rolling out the service’s beta test in preparation for a possible commercial launch soon.

Those looking to try out SpaceX’s Internet service may register through Starlink’s website. Upon opening the page, users will be prompted to enter their email address, zip code and country to complete the registration process.

Users who are able to successfully register will then receive an email message from SpaceX, which discusses brief details about the beta testing phases. As noted by the company, registered users will be notified as soon as beta testing is available in their region.

“Starlink is designed to deliver high-speed broadband internet to locations where access has been unreliable, expensive, or completely unavailable,” the company stated. “Private beta testing is expected to begin later this summer, followed by public beta testing, starting with higher latitudes.”

“If you provided us with your zip code, you will be notified via email if beta testing opportunities become available in your area,” SpaceX added. “In the meantime, we will continue to share with you updates about general service availability and upcoming Starlink launches.”

Although the company did not mention where Starlink’s beta testing will be available first, SpaceX founder Elon Musk revealed in a tweet in May that the initial testing phase for Starlink will only be available in areas at higher latitudes, such as Seattle. Musk noted that it might also be available in London.

Eventually, as more Starlink satellites enter low-Earth orbit, the service will be available to different parts of the world. In total, SpaceX plans to launch up to 42,000 Starlink satellites. Currently, the company has over 500 Starlink units orbiting Earth.

Through Starlink’s Internet service, SpaceX is promising to deliver speeds of up to one gigabit per second with a latency of about 30 milliseconds. Hype Beast noted that SpaceX is targeting to launch Starlink’s service commercially in North America later this year. It might reach the rest of the world sometime in 2021.
Click here to view the source article.
Source: International Business Times, Inigo Monzon, 22 Jun 2020

Assemblyman Calls for Commission to Study 5G Safety
USA Created: 17 Jun 2020
TRENTON - Assemblyman Jamel Holley (D-20thDist) is calling for the creation of a state commission to study the many unknown health effects of the next generation of wireless technologies, which are steadily expanding throughout New Jersey.

The wireless industry is engaged in the large scale deployment of 5G microwave antennas to dramatically enhance the nation’s broadband infrastructure. Such technology is welcomed, as it eliminates rural internet disparities, enables new forms of automation, and promotes advancements in telemedicine.

However, there are deep concerns about potential health effects within New Jersey communities, Assemblyman Holley said. 5G technology uses existing technology and new applications of microwave radiation to transmit large amounts of data. It requires closer proximity to network users, resulting in dense deployment of antennas near schools, residences, and businesses throughout New Jersey.

“My constituents have expressed some deep concerns about the potential health impacts of these antennas, especially in high-density communities like Elizabeth and Union Township,” Assemblyman Holley said. “We need to analyze the involuntary exposure of citizens to 5G technology, especially without their express knowledge or consent of the potential health impacts.”

Assemblyman Holley noted the Federal Communications Commission (FCC) has not yet conducted long-term testing of 5G technology, and has not updated its wireless radiation human exposure guidelines since 1996.

“Wireless industry leaders have admitted that safety tests have not yet been conducted to determine any possible adverse health effects from the constant exposure to higher frequency wireless radiation,” the assemblyman said. “Meanwhile, there’s a significant body of published, peer-reviewed, independent scientific studies that link exposure to wireless radiation with serious biological harm and increased risk of cancer, reproductive problems, and neurological impairments.”

Assemblyman Holley said the mounting research casts doubt on the theory that low-level exposure to radio-frequency microwave radiation is harmless. There are more than 250 medical and public health professionals who have signed a joint statement urging government officials to consider the latest science on microwave radiation and human health, especially the latest science concerning abnormal brain development in unborn children, Holley said.

“I am not taking a position on 5G until I have more information,” the assemblyman said. “My concern is the overall body of evidence concerning the potential health impacts of wireless radio wave radiation. It is inconclusive and lacking in high-quality research. We need further study and consideration to help shape appropriate regulatory policies that best protect New Jerseyans.”

Assemblyman Holley is calling for the “New Jersey Commission on 5G Health Effects,” which would study the environmental and health effects of 5G wireless technologies, with a focus on the potential health risks that these technologies pose to vulnerable populations.

The assemblyman suggests the commission comprise 11 members. That includes two members of the General Assembly, two members of the State Senate, one member of the cellphone and wireless technology industry, one member representing the business community, one member of the public with expertise in the biological effects of wireless radiation, the Attorney General (or his appointee), the Commissioner of Health (or her designee), one member of the State Medical Society, and one member representing Rutgers University who is knowledgeable about wireless radiation.
Click here to view the source article.
Source: TapInto Newark, ADAM SAMUEL, 16 Jun 2020

Telecoms offering 'much lower' payment rates for masts
Ireland Created: 17 Jun 2020
Northern Irish farmers have raised concerns over the decline in payment rates for mobile phone masts, the Ulster Farmers Union has said.

Farmers in Northern Ireland were dealing with the impact of the new Electronic Communications Code, the union explained.

It said mobile phone operators were offering 'much lower' payment rates for mobile phone masts.

This, in turn, was putting farmers 'under pressure' to agree to new contracts, the UFU added.

A meeting to address members concerns was scheduled for 19 March but had to be cancelled due to the coronavirus pandemic.

The UFU said it would now be holding this meeting via teleconference for union members on Tuesday 30 June.

Deputy president, Victor Chestnutt will chair the teleconference which will include presentations and contributions by guest speakers Kate Russell of the Central Association of Agricultural Valuers (CAAV) and Scott Edmondson director of Country Estates.

The teleconference will address farmers' concerns regarding the Electronic Communications Code and mobile phone mast agreements.

It will also provide answers to questions and concerns surrounding the implications of the new code.
Click here to view the source article.
Source: Farming UK, 16 Jun 2020

5G won’t be a financial cash cow for wireless carriers, report says
USA Created: 15 Jun 2020
The spread of superfast 5G wireless networks will provide a boon to the economy, although the revenue generated by wireless carriers from the emerging technology could be modest, according to a new report.

Companies in manufacturing, health care, transportation, environmental monitoring, and gaming will get major financial benefits from 5G’s speedier connections, according to consulting firm KPMG. Increased spending on connectivity, hardware, software, and services could drive more than $140 billion of new annual revenue in those sectors worldwide by 2023.

But for telecommunications carriers like Verizon, AT&T, and T-Mobile, which are spending tens of billions of dollars to build 5G networks, KPMG’s forecast was less generous. Only about 11% of spending from the introduction of 5G will go to connectivity. “It’s a sobering prospect for telcos,” the report notes. “The dire economic impact of becoming a ‘dumb-pipe’ is real and requires immediate action for those not already positioned to benefit.”

The carriers have already struggled to charge consumers more for 5G, with Verizon eliminating an extra charge for 5G last year and T-Mobile pledging not to charge for the faster service for at least three years as part of its deal to gain approval for merging with rival Sprint.

At the same time, the carriers have also tried to take advantage of 5G, which provides connections that are 10 to 100 times as fast as current 4G LTE, in new ways. With the help of its 2018 acquisition of Time Warner, AT&T will be able to offer video streaming and other entertainment over its 5G network. Meanwhile, Verizon runs a large digital media unit which is designing programming specially for 5G. Verizon is also partnering with Amazon to create small cloud computing data centers to host 5G apps and services. And T-Mobile plans to offer wireless home Internet service nationwide via its 5G network.

Among the five business sectors analyzed in the report, manufacturing will gain the most new revenue as a result of 5G, with robots and other autonomous machines helping factories become more efficient with higher-quality output and reduced maintenance costs. Gaming will also produce considerable additional revenue thanks to 5G, as both virtual reality and cloud-based gaming get a boost, the report noted.

The software industry will also be a big winner from 5G, as manufacturers buy apps that use A.I. to run automated factories, hospitals use programs to gather and analyze wireless sensor data, and video gamers opt for the latest titles to play via streaming, the report noted.

(Correction: This story was updated on June 10, 2020 to correct the percentage of spending on 5G connectivity after KPMG corrected the figure in its report.)
Click here to view the source article.
Source: Fortune, Aaron Pressman, 10 Jun 2020

Proposal for 4G mast in Local Hero village scrapped
Scotland Created: 15 Jun 2020
Plans to construct a 4G internet mast in Pennan have been thrown out - The village, which featured in the movie Local Hero, had been mooted as a location to build the structure.

However, the proposal for the eight-metre mast was refused by councillors last year and the Scottish Government has now removed it from its Scottish 4G Infill Programme.

The pole was planned to be built next to the village's community hall in a conservation area.

Councillor Glen Reynolds said: "I am delighted that thanks to the Scottish Government, the proposal to have a phone mast in Pennan is now off the table.

"This was always an issue about where such a sizeable structure was placed in a relatively small and enclosed space.

"However, our coastal villages do need regeneration – especially now – and I agree with those who want measures taken to ensure that our coastal communities are dynamic, sustainable villages with properties that are lived in and with access to digital and mobile connectivity, empowering more people to live, stay and work from places like Pennan.

"With all of those issues, ultimately and in a post Covid world, Pennan has to be a welcoming, inclusive place capable of raising bairns and promoting business activity from home, and sharing in the idyllic surroundings our coast has to offer.

"But this proposal meant having a mast in a conservation area and I always felt it would dominate the landscape and was too close to the community hall, so I was against it.

"Many in the village have access to mobile phone signals and other technology through Wi-Fi and superfast broadband.

"Visitors and tourists need good communication too, so I hope that a way will be found to address this but a mast as planned, would have been overbearing.

"The village already has its iconic phone box – we didn’t need a phone mast to be a blot on the beautiful landscape that is Pennan."

Related news:
May 2019, United Kingdom: Local Hero village of Pennan phone mast refused by councillors
Click here to view the source article.
Source: Grampian Online, Kyle Ritchie, 14 Jun 2020

«First  ‹Previous   Page 2 of 754   Next›  Last»